Exercise 16

For the following exercises, determine whether the relation represents y as a function of x.

$$
x=\sqrt{1-y^{2}}
$$

Solution

Try to solve the given equation for y. Start by squaring both sides to remove the square root on the right side.

$$
x^{2}=1-y^{2}
$$

Isolate the term with y.

$$
y^{2}=1-x^{2}
$$

Take the square root of both sides.

$$
\sqrt{y^{2}}=\sqrt{1-x^{2}}
$$

Because there's an even power under an even root, and the result is to an odd power (y^{1}), an absolute value sign is needed.

$$
|y|=\sqrt{1-x^{2}}
$$

Remove the absolute value by placing \pm on the right side.

$$
y= \pm \sqrt{1-x^{2}}
$$

The relation $x=\sqrt{1-y^{2}}$ is not a function because for every input x, there are two outputs given by $y=\sqrt{1-x^{2}}$ and $y=-\sqrt{1-x^{2}}$. This is reflected in the graph by the fact that there are vertical lines that pass through the curve more than once.

